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Role of forests in the global carbon balance
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Rate of warming accelerated
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Over the 70-year period mean annual temperature increased by 0.78°C
as a results of increased CO, concentrations (IPCC 4AR 2006).
Fenological events advanced by 10 days in 100 years (Linkosalo et alo

2009). Luke
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Many species cannot track climate A
Some species cannot track climate

Most species able to track climate
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Predicting changes in the species’ range of distribution

 We can constructed species-specific response models to
environmental factors (including temperature)

Ramenskii 1925, Olskol River Heikkinen & Mkipas 2010 ki

10

expected abundance, %
5
1

 Then, we can predict future range of geographical distribution
In changing climate
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Changes in the abundance of plants species monitored since
1951 as a sub-study of the Finnish national forest inventory
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1951-53

Abundance of twinflower (Linnaea borealis)

Source: Reinikainen, Makipaa et al. (eds). 2000. Kasvit muuttuvassa metsaluonnossa. Tammi.



Modelling of plant species’ responses %

to environmental variables SRR

« Finnish nation-wide vegetation abundance L
data from 3000 sample plots. Finland yihfinig

» Soil data from a sub-sample of the plots
(n=500). i

« Climate data and future climate prediction — afiiiiiiiiiEET
in a grid scale of 1 x 1 km? and 10 x 10

» Quantile regression models on species'
abundance along a temperature gradient g S PR
and other environmental variables ol s ‘D

 Spatial predictions of species potential Lu ke
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Predicted climate change

Temperature sum (T = 5 C) reference period Temperature sum (T > 5 C) prediction:
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Quantile regression models for species responses
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- To analyse maximum ecological response

- To estimate the effect of a limiting factor when it is actually
known that other factors could be the active limiting
constraint at some locations (Cade et al. 2005, Austin 2007)

- Especially suited to forecast the fate of species under
future scenarios of climate change (see Jarema et al. 2009)
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Predicted change in potential abundance,
wood anemone (Anemone nemorosa)

Abundance 1985 Predicted abundance, 2041-2070 climate
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Predicted change in potential abundance,
twinflower (Linnea borealis)

Abundance 1985 Predicted abundance, 2041-2070 climate
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Predicted change in potential abundance
Metsakastika (Calamagrostis arundinacea)

Abundance 1985 Predicted abundance, 2041-2070 climate
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Trees in changing climate

e Trees cannot track climate change by displacement —
long life-span

o Are there differences in the adaptation capasity between
tree species”?

* Conifers and broadleaf species have different saturating
temperatures for productivity:

— 13.2° C for conifers and 17 ° C for birch (Linkosalo et
al.)

— 15° C for Norway spruce (Bergh et al. 1997), 18" C
for Scots pine (Kellomé&ki in Bergh 2003), 22 °

— 24 ° C beech (Freeman 1998) Q
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Trees in changing climate — do they adapt?

Many species cannot track climate A

Some species cannot track climate C

Most species able to track climate B ﬂ' '
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Productivity of trees affected by temperature and
phenology
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Elevated CO2 increase photosynthetic capasity beyond the temperature effect
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Both increased temperature and
elevated CO, affect growth
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Forest growth enhanced by CO2 and
temperature on all site conditions
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Global effect of tree species diversity on
forest productivity.
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Mixed stands In changing climate —
a simulation study

o Efimod-model describes competition for both
above-ground (light) and below-ground
(nutrients) resources.

 Model is widely applied and published, e.g.
Chertov et al. 1999, Komarov et al 2003,
Palosuo et al 2008, Shanin et al. 2013
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Mixed stands In changing climate —
a simulation study

Efimod-model describes competition for both
above-ground (light) and below-ground
(nutrients) resources.

Model is widely applied and published, e.g.
Chertov et al. 1999, Komarov et al 2003,
Palosuo et al 2008, Shanin et al. 2013

Simulations on mesic site type with A1B
(ECHAMS5 GCM) scenario (+3.3°C)

Mixed stands with initial proportions of
competitive tree species varied 90:10, 70:30, Q
50:50, 30:70, 10:90 e EUKE
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Ecological Modelling 251 (2013) 232-245

Contents lists available at SciVerse ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Carbon turnover in mixed stands: Modelling possible shifts under climate change

Vladimir Shanin®*, Alexander Komarov?, Yulia Khoraskina?, Sergey Bykhovets?, Tapio Linkosalo®,

Raisa Mdkipaab

9B1P
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Shanin, V., Komarov, A. & Mé&kipad, R. Eur J Forest Res (2014) 133:273-286

Tree species composition affects productivity &
carbon dynamics in boreal forests
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Mixed stands are productive
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The mixed forest stands of two or three competing tree species (Picea

abies, Pinus sylvestris and Betula pendula) were more productive than

monocultures; the highest overyielding was observed with mixture of

two coniferous species.

Source: Shanin et al 2014. Eur J For Res 133:273-286 Q
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New methods to assess tree
canopy responses to.

« 2013: Method to reconstruct
comprehensive QSMs of single
trees from TLS data

o 2015: Generalization to massive
scale => automatic forest plot
reconstruction

« Now: Use QSMs to compute
classification features and
detect tree species
automatically after
reconstruction

* Previous methods require some
manual interaction, or additional
data sources

English 0
268 m3

TAMPERE (:) . . - . . .
$ UNIVERSITY OF Luke Automatic tree species recognition with quantitative structure models
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Remote Sensing of Environment

S T -l > ey
ELSEVIER journal hamepage: www.elsevier.com/locate/rse

Contents lists available at ScienceDirect Renmote Sensing

Ermvircment

®

Automatic tree species recognition with quantitative structure models @Cmm

Markku Akerblom?*, Pasi Raumonen?, Raisa Mdkipda®, Mikko Kaasalainen?

Methods

3 single-species and 2 multi-species
forest plots from Finland scanned
terrestrial LIDAR

Each tree detected and reconstructed
automatically as a cylinder-based QSM
15 classification features defined and
computed

Feature combinations tested using 5
different classification approaches: k-
NN, multinomial regression and 3
support vector machines

TAMPERE (:) . . - . . .
$ UNIVERSITY OF Luke Automatic tree species recognition with quantitative structure models
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Scanned trees and fitted GSMs

Morway spruce plot
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Forest plot tree location and height map (crosses) and scanner positions (circles).

Source: Akerblom et al. 2017. Remote Sensing of Environment, doi.org/10.1016/j.rse.2016.12.002
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Scanned Scots pine stand and fitted GSM

Scots pine plot
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Tree features calculated from the

fitted QSMs

Source: Akerblom et al. 2017. Remote Sensing of Environment, doi.org/10.1016/j.rse.2016.12.002

Feature name

Description

Stem branch angle
Stem branch cluster size
3 S5tem branch radius

Stem branch length
Stem branch distance

Crown start height

Crown height
CTowWT eVenness

Crown diameter/ height
DBH/height ratio

DBH/tree volume
DBH/minimum tree radius
Volume below 55% of height
Cylinder length/tree volume
Shedding ratio

Median of the branching angles of the 1st order branches in degrees. 0 is upwards and
180 downwards. [*]

Average number of 1st order branches inside a 40 cm height interval for 1st order
branches. Each branch can only belong to one interval.

Mean ratio between the 10 largest 1st order branches measured at the base and the
stem radius at respective height.

Average length of 15t order branches normalized by DBH.

Average distance between 1st order branches computed using a moving average with
a window width 1 m. If window is empty average distance in window is set as half of
window width.

Height of first stem branch in tree crown relative to tree height.

Vertical distance between the highest and lowest crown cylinder relative to tree height.
Crown cylinders divided into 8 angular bins. Ratio between extremeé minimum heights
in bins.

Ratio between crown diameter and height.

Ratio between DBH and total tree height.

Ratio between DEH and total tree volume. [m‘z]

Ratio between DEH and the minimum of the vertical bin radius estimates.

Relative cylinder volume below 55% of tree height.

Ratio between total length of all cylinders and total tree volume. [m‘zl

The number of branches without children divided by the number of all branches in the
bottom third.



http://dx.doi.org/10.1016/j.rse.2016.12.002

Summary & Conclusions

* Quantitative structure
models (QSM) can be
reconstructed from terrestrial
laser scanner (TLS) data
automatically

 QSM offers more than 3 data
dimensions from which to
derive novel species
classification features

o Classification tested using 5
forest plots from Finland and
over 1200 trees consisting of
3 species.

Source: Akerblom et al. 2017. Remote Sensing of Environment, doi.org/10.1016/j.rse.2016.12.002
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Further information and demos

Contents lists available at ScienceDirect Rennoee Sensing
Ermircnment

Remote Sensing of Environment

journal homepage: www .elsevier.com/locate/rse

Automatic tree species recognition with quantitative structure models @::mmrk

Markku Akerblom®*, Pasi Raumonen?, Raisa Makipda®, Mikko Kaasalainen?

http://www.sciencedirect.com/science/article/pii/S0034425716304746 see
Appendix A

Video illustrations on

1. how the classification features are defined.

2. how the samples of different tree species are distributed in each feature
dimension, and in particular how three example models map to these
dimensions.

TAMPERE (‘:) . . - . . .
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Take home messages

Climate change will affect abundance of plant species

Some common forest plant species (e.g. Calamagrostis
arundinacea) can be used as indicator species, since they are
clearly temperature dependent and may move towards north by rate
of 8 km per year.

Major tree species are positively affected by increasing temp and
CO,. Growth and timber yield may increase if risks of forest
damages (insects, pathogens, and wind damages are avoided)

Mixed stands are more productive than monocultures and species
specific risks reduced.

New methods allow detailed analyses of the canopy responses to
changed management practices.

Luke
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Current target - sustainable forest management

« Multiple targets of the forest management include timber
production, recreation values, maintenance of biodiversity and
mitigation of climate change by forest carbon sinks.

 Even-aged monocultures are suggested to be vulnerable to
disturbances and the consequences of climate change
(O’'Hara et al., 2007; Seidl et al., 2011).

 The low structural diversity of the tree stand is not optimal for
biodiversity, ecosystem productivity and forest carbon
sequestration.

e What we can gain by continuous cover forestry? Uneven-
aged forest management?

Luk%
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The simulated scenarios of stand development -
from even-aged management to uneven-aged
stand structure and management.

stand
basal

trigger point

harvesting intensity

cuttin_g limit

I L |
precommercial  harvesting interval
thinnings | | Q

selection cuttings
Luke
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Simulated selection cutting scenarios contained
variations of both harvest interval (10-30 years)
and postharvest stand density (basal area 8—-16

m2 ha-1).

‘R’ denotes the harvesting interval, years, and ‘T’ denotes

threshold value of stand basal area, [m? ha™1], to be reached after

harvesting

Harvesting Limiting value of stand basal area, [m* ha™]

interval, years | 8 10 12 14 16

10 R10TO8 R10T10 R10T12 R10T14 R10T16
15 R15T08 R15T10 R15T12 R15T14 R15T16
20 R20T08 R20T10 R20T12 R20T14 R20T16
30 R30T08 R30T10 R30T12 R30T14

RBOle
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Net ecosystem production (NEP) increased from

0.251t0 0.5 kg m-2 a-1 of car

harvest intervals and higher

HEP knm-zZai

pon with longer

postharvest density
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I
]
=

Net ecosystem production NEP calculated as the difference between net
primary production and carbon emission due to respiration of soil biota. T
solid horizontal line on upper pane is the median line for NEP at urﬂsﬂ

development; dashed horizontal lines denote 1stand.3 .quantiles,

respectively.
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Nitrogen use efficiency (NUE) varied between
from 100 kg NPP per kg consumed N in case of
heavy cuttings to 300 kg NPP per kg consumed N
for light removal of trees.
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Clhemipe nsol C skooks, 5
[ul

Changes in soll carbon stocks were negative for
most scenarios (5—20% decline in terms of total
soll C), and the decline was most pronounced
with lowest postharvest density and short harvest
Intervals.
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Changes in soil carbon stocks (% of initial values) during second halfi IQ

simulation period (a series of selection cuttings). ‘Whiskers’ denote st e
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The volume of harvested timber was between 320
and 400 m3 ha-1 for the a 60-year period.

The cumulative volume of deadwood of 80—120 m3 ha-1 was
substantially higher with the longest harvest interval (30 years) than
with the shorter alternatives where it comprised 40-60 m3 ha-1.

1000 5

200
S00
400 —
200
o 4

Ttotal amount of harvested wood at different scenarios. Different colours
indicate the volumes obtained at different selection cuttings; blank block
with black boundary represent the standing volume at the end of L k
simulation period, blank blocks with grey boundary are cumulative UKe
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